본문 바로가기

Mathematics/Linear Algebra

adjoint matrix, minor, cofactor

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

소행렬식 = minor

여인자 = cofactor







 의 n차의 정사각행렬 A=[aij]의 성분 aij의 여인자를 Aij라 할 때, 행렬 [Aij]T를 A의 수반행렬(adjoint matrix)이라 하고, adj A 로 나타낸다. 즉,







ex2> http://en.wikipedia.org/wiki/Adjugate

2 × 2 generic matrix

The adjugate of the 2 × 2 matrix

\mathbf{A} = \begin{pmatrix} {{a}} & {{b}}\\ {{c}}  & {{d}} \end{pmatrix}

is

\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} \,\,\,{{d}} & \!\!{{-b}}\\ {{-c}} & {{a}} \end{pmatrix}.

[edit] 3 × 3 generic matrix

Consider the 3\times 3 matrix


\mathbf{A} = \begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}.
 

Its adjugate is the transpose of the cofactor matrix


\mathbf{C} = \begin{pmatrix} 
+\left| \begin{matrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{21} & A_{23} \\ A_{31} & A_{33}  \end{matrix} \right| &
+\left| \begin{matrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} A_{12} & A_{13} \\ A_{32} & A_{33} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{13} \\ A_{31} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{12} \\ A_{31} & A_{32} \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} A_{12} & A_{13} \\ A_{22} & A_{23} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{13} \\ A_{21} & A_{23} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{matrix} \right|
\end{pmatrix} = \begin{pmatrix} 
+\left| \begin{matrix} 5 & 6 \\ 8 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 4 & 6 \\ 7 & 9  \end{matrix} \right| &
+\left| \begin{matrix} 4 & 5 \\ 7 & 8 \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} 2 & 3 \\ 8 & 9 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 3 \\ 7 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 1 & 2 \\ 7 & 8 \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} 2 & 3 \\ 5 & 6 \end{matrix} \right| &
-\left| \begin{matrix}  1 & 3 \\ 4 & 6 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 2 \\ 4 & 5 \end{matrix} \right|
\end{pmatrix}


So that we have


\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} 
+\left| \begin{matrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{12} & A_{13} \\ A_{32} & A_{33}  \end{matrix} \right| &
+\left| \begin{matrix} A_{12} & A_{13} \\ A_{22} & A_{23} \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} A_{21} & A_{23} \\ A_{31} & A_{33} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{13} \\ A_{31} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{13} \\ A_{21} & A_{23}  \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{12} \\ A_{31} & A_{32} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{matrix} \right|
\end{pmatrix} = \begin{pmatrix} 
+\left| \begin{matrix} 5 & 6 \\ 8 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 2 & 3 \\ 8 & 9  \end{matrix} \right| &
+\left| \begin{matrix} 2 & 3 \\ 5 & 6 \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} 4 & 6 \\ 7 & 9 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 3 \\ 7 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 1 & 3 \\ 4 & 6  \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} 4 & 5 \\ 7 & 8 \end{matrix} \right| &
-\left| \begin{matrix} 1 & 2 \\ 7 & 8 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 2 \\ 4 & 5 \end{matrix} \right|
\end{pmatrix}


where

 
\left| \begin{matrix} A_{im} & A_{in} \\ \,\,A_{jm} & A_{jn} \end{matrix} \right|=
\det\left(    \begin{matrix} A_{im} & A_{in} \\ \,\,A_{jm} & A_{jn} \end{matrix} \right).


Note that the adjugate is the transpose of the cofactor matrix. Thus, for instance, the (3,2) entry of the adjugate is the (2,3) cofactor of A.